skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Noether, Bea"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We introduce a class of multi-Higgs doublet extensions of the Standard Model that solve the strong C P problem with profound consequences for the flavor sector. The Yukawa matrices are constrained to have many zero entries by a “Higgs-flavor” symmetry, G HF , that acts on Higgs and quark fields. The violation of both C P and G HF occurs in the Higgs mass matrix so that, for certain choices of G HF charges, the strong C P parameter θ ¯ is zero at tree level. Radiative corrections to θ ¯ are computed in this class of theories. They vanish in realistic two-Higgs doublet models with G HF = Z 3 . We also construct realistic three-Higgs models with G HF = U ( 1 ) , where the one-loop results for θ ¯ are model-dependent. Requiring θ ¯ < 10 10 has important implications for the flavor problem by constraining the Yukawa coupling and Higgs mass matrices. Contributions to θ ¯ from higher-dimension operators are computed at one loop and can also be sufficiently small, although the hierarchy problem of this class of theories is worse than in the Standard Model. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. A<sc>bstract</sc> We show that near the edges of the conformal window of supersymmetric SU(Nc) QCD, perturbed by Anomaly Mediated Supersymmetry Breaking (AMSB), chiral symmetry can be broken depending on the initial conditions of the RG flow. We do so by perturbatively expanding around Banks-Zaks fixed points and taking advantage of Seiberg duality. Interpolating between the edges of the conformal window, we predict that non-supersymmetric QCD breaks chiral symmetry up toNf≤ 3Nc− 1, while we cannot say anything definitive forNf≥ 3Ncat this moment. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026